Tmem100 Is a Regulator of TRPA1-TRPV1 Complex and Contributes to Persistent Pain

نویسندگان

  • Hao-Jui Weng
  • Kush N. Patel
  • Nathaniel A. Jeske
  • Sonya M. Bierbower
  • Wangyuan Zou
  • Vinod Tiwari
  • Qin Zheng
  • Zongxiang Tang
  • Gary C.H. Mo
  • Yan Wang
  • Yixun Geng
  • Jin Zhang
  • Yun Guan
  • Armen N. Akopian
  • Xinzhong Dong
چکیده

TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is coexpressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a reduction in inflammatory mechanical hyperalgesia and TRPA1- but not TRPV1-mediated pain. Single-channel recording in a heterologous system reveals that Tmem100 selectively potentiates TRPA1 activity in a TRPV1-dependent manner. Mechanistically, Tmem100 weakens the association of TRPA1 and TRPV1, thereby releasing the inhibition of TRPA1 by TRPV1. A Tmem100 mutant, Tmem100-3Q, exerts the opposite effect; i.e., it enhances the association of TRPA1 and TRPV1 and strongly inhibits TRPA1. Strikingly, a cell-permeable peptide (CPP) containing the C-terminal sequence of Tmem100-3Q mimics its effect and inhibits persistent pain. Our study unveils a context-dependent modulation of the TRPA1-V1 complex, and Tmem100-3Q CPP is a promising pain therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loosening Pain’s Grip by Tightening TRPV1-TRPA1 Interactions

TRPA1 and TRPV1 are ion channels crucial for pain sensation. In this issue of Neuron, Weng et al. (2015) demonstrate that the activity of TRPA1-TRPV1 heteromers is governed by Tmem100 and that disabling Tmem100 may be a novel pharmacologic strategy to combat pain.

متن کامل

Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats

BACKGROUND Chronic pain in masticatory muscles is a major medical problem. Although mechanisms underlying persistent pain in masticatory muscles are not fully understood, sensitization of nociceptive primary afferents following muscle inflammation or injury contributes to muscle hyperalgesia. It is well known that craniofacial muscle injury or inflammation induces regulation of multiple genes i...

متن کامل

Oxidized Phospholipid OxPAPC Activates TRPA1 and Contributes to Chronic Inflammatory Pain in Mice

Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to in...

متن کامل

Modulation of transient receptor vanilloid 1 activity by transient receptor potential ankyrin 1.

Transient receptor potential vanilloid 1 (TRPV1) is a nonselective ligand-gated cation channel responding to noxious heat, protons, and chemicals such as capsaicin. TRPV1 is expressed in sensory neurons and plays a critical role in pain associated with tissue injury, inflammation, and nerve lesions. Transient receptor potential ankyrin 1 (TRPA1) is coexpressed with TRPV1. It is activated by com...

متن کامل

Central activation of TRPV1 and TRPA1 by novel endogenous agonists contributes to mechanical and thermal allodynia after burn injury

The primary complaint of burn victims is an intense, often devastating spontaneous pain, with persistence of mechanical and thermal allodynia. The transient receptor potential channels, TRPV1 and TRPA1, are expressed by a subset of nociceptive sensory neurons and contribute to inflammatory hypersensitivity. Although their function in the periphery is well known, a role for these TRP channels in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2015